2LAN500 - Module

DATA SHEET

25. November 2016

Version 1.3

VERSION HISTORY

Version	Date	Comment
1.0	04.08.2015	Initial version
1.1	12.05.2016	Mechanical specification in section 8.5 updated
1.2	01.09.2016	Changed connector in section 8.5 for horizontal version
1.3	25.11.2016	Added lead size for the connectors in section 8.5

Copyright © 2014-2016 Adatis GmbH & Co. KG

All rights reserved.

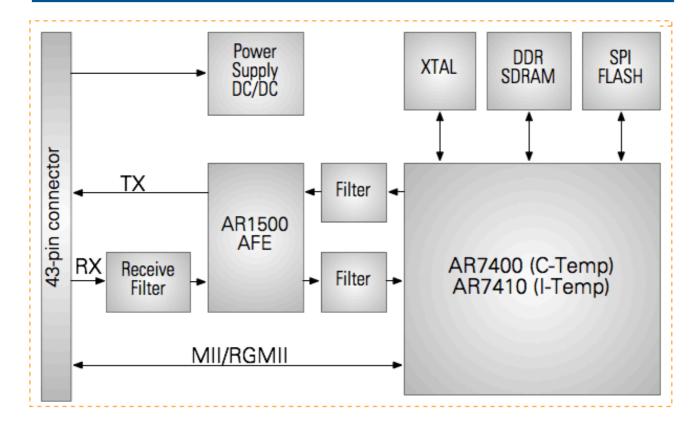
Adatis assumes no responsibility for any errors which may appear in this manual. Furthermore, Adatis reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Adatis' products are not authorized for use as critical components in life support devices or systems.

All trademarks listed herein are owned by their respective owners.

2LAN500 - Module

Contents

1.	Ord	ering Information	4				
2.	Des	cription	5				
	2.1.	Features	5				
	2.2.	Applications	5				
3.	Pin-	Assignment MII-Version (Fast-Ethernet)	6				
4 .	Pin-	Assignment RGMII-Version (Gigabit-Ethernet)	7				
5.	Deta	ailed Pin Description by Group	8				
	5.1.	Ethernet-Interface	8				
	5.2.	GPIO-Pins - Strap Options	9				
	5.3.	Special Function Pins	10				
	5.4.	Line Interface	10				
	5.5.	Power	10				
6.	Configuration of the 2LAN500 Module1						
	6.1.	Host Interface Mode Selection	11				
	6.2.	Ethernet Configuration (PHY Mode only)	12				
	6.3.	LED-Indicators					
	6.4.	Security Pushbutton	14				
7.	Application Example						
	7.1.	Powerline Interface with RGMII version, PHY mode	14				
	7.2.	2-Wire/telephone cable interface with MII version, MAC mode	16				
	7.3.	RGMII Ethernet interface	18				
8.	2LA	N500 Specifications	19				
	8.1.	Power Supply Requirements	19				
	8.2.	Absolute Maximum Ratings	19				
	8.3.	DC Characteristics	19				
	8.4.	PCB Layout Top- / Bottom-Layer	20				
	8.5.	Mechanical Specifications	20				
9.	Арр	endix	22				
	9.1	Transformer Data Sheet	22				



1. Ordering Information

Ordering Code	Description
2LAN500-HC	Horizontal Module, Commercial Temperature, MII-Interface
2LAN500-VC	V ertical Module, C ommercial Temperature, MII-Interface
2LAN500-HI	Horizontal Module, Industrial Temperature, RGMII-Interface
2LAN500-VI	V ertical Module, I ndustrial Temperature, RGMII-Interface

2LAN500 - Module

2. Description

The 2LAN500 PLC-Module is an integrated device for transmitting and receiving data over the power line or any other 2-wire line. It holds all functions necessary for the easy creation of a HomePlug AV compatible network device.

The host interface can be configured to operate in two alternative modes:

PHY-Mode

Serves as a MII/RGMII PHY interface for connection to Ethernet MAC controllers.

Host-MODE

Serves as an MII/RGMII host interface for connection to an Ethernet PHY.

2.1. Features

- Supports up to 500 Mbps PHY rates over power line
- up to 300 m range via power cable (preliminary)
- up to 400 m range via telephone cable (prelim.)
- IEEE 1901 compatible HomePlugAV power line networking controller with MII/RGMII (MAC or PHY mode) interfaces
- Open API for status information and device configuration

- 128 bit AES link encryption with key management for enhanced security
- Simplifies development cycle, assembly, and testing
- AR7400 (AR7410) / AR1500 chipset
- Physical dimension: 27.5 mm x 69.5 mm
- Horizontal and vertical mounting version with straight and right-angle connector, respectively
- Cost-optimized design
- Designed for small-footprint embedded applications

2.1. Applications

- Ethernet extension via any wire
- Polarity agnostic 2-wire installation
- Retrofitting using existing wiring
- Ethernet anywhere
- Security Cameras
- AV-Intercoms
- Home Automation
- Voice-over-IP (VoIP)
- Audio and video streaming
- video distribution
- High speed broadband sharing

3. Pin-Assignment MII-Version (Fast-Ethernet)

		Pin-#	Pin Name	Function
DUDLEY	1,	1	DUPLEX	strapping: Duplex Mode
DUPLEX -	2	2	GPIO4	strapping: SPEED_SEL[0]
GPIO4	3	3	GPIO3	strapping: ISODEF
GPIO3	4	4	GPI02	strapping: ANEN
GPIO2	5	5	NC1	not connected, core voltage internally generated
NC1 —	6	6	NC2	not connected, core voltage internally generated
NC2	7	7	GND1	Ground
GND1	8	8	GPI01	strapping: ENET_SEL[1] / Security Push Button
GPIO1	9	9	LINE_SYNC	AC line zero-cross detect signal
LINE_SYNC —	10	10	MII_RXD3	MII Receive Data Bit 3
MII_RXD3 —	11	11	MII_RXD2	MII Receive Data Bit 2
MII_RXD2 —	12	12	MII_RXD1	MII Receive Data Bit 1
MII_RXD1 —	13	13	MII_RXD0	MII Receive Data Bit 0
MII_RXD0 —	14	14	MII_RXDV	MII Receive Data Valid
MII_RXDV	15	15	MII_RXCLK	MII Receive Clock
MII_RXCLK —	16	16	MII_CRS	MII Carrier Sense
MII_CRS	17	17	MII_RXER	MII Receive Error
MII_RXER —	18	18	GND2	Ground
GND2	19	19	GPI09	strapping: DDR_SEL / LED: Ethernet Link
GPIO9	20	20	GPI010	strapping: BM_SEL / LED: Powerline Mode
GPIO10	21	21	MII_TXCLK	MII Transmit Clock
MII_TXCLK —	22	22	MII_TXEN	MII Transmit Enable
MII_TXEN —	23			
MII_COL —	24	23	MII_COL	MII Collision Detect
MII_TXD0 —	25	24	MII_TXD0	MII Transmit Data Bit 0
MII_TXD1 —	26	25	MII_TXD1	MII Transmit Data Bit 1
MII_TXD2 —	27	26	MII_TXD2	MII Transmit Data Bit 2
MII_TXD3 —	28	27	MII_TXD3	MII Transmit Data Bit 3
GND3	29	28	GND3	Ground
GPIO5	30	29	GPI05	strapping: MD_A[3]
GPIO7	31	30	GPI07	strapping: MD_A[4]
MII_MDIO -	32	31	PHY_MDIO	MII management data I/O
MII_MDCLK -	33	32	PHY_MDCLK	MII management data clock
VDD1 —	34	33	VDD1	+3.3V
VDD2 —		34	VDD2	+3.3V
RESET -	35	35	RESET	reset all module logic when low
GPIO11	37	36	GPI011	strapping: SPEED_SEL[1] / LED: Power
GPIO8 —	38	37	GPI08	strapping: MP_SEL / LED: Powerline Link
GND4 -	39	38	GND4	Ground
TX 🕳	40	39	TX	Analog transmit+ output to transformer
TXn 🕳	─	40	TXn	Analog transmit- output to transformer
RXn 🕳	41	41	RXn	Analog receive- input from transformer
RX -	42	42	RX	Analog receive+ input from transformer
VAA 🕳	43	43	VAA	+11.2 V

Table 3.1: Pin Assignment MII-Version

4. Pin-Assignment RGMII-Version (Gigabit-Ethernet)

GPIO3	PILEX strapping: Duplex Mode PIO4 strapping: SPEED_SEL[0] PIO3 strapping: ISODEF PIO2 strapping: ANEN NC1 not connected, core voltage internally generated NC2 not connected, core voltage internally generated ND1 Ground
GPIO4 2 2 GI GPIO3 3 3 GI GPIO2 4 4 GI NC1 5 5 N NC2 6 6 N GND1 7 G GPIO1 8 8 GI	PIO3 strapping: ISODEF PIO2 strapping: ANEN NC1 not connected, core voltage internally generated NC2 not connected, core voltage internally generated
GPIO3 3 G G G G G G G G G G G G G G G G G G	PIO2 strapping: ANEN NC1 not connected, core voltage internally generated NC2 not connected, core voltage internally generated
GPIO2 4 4 GI NC1 5 5 N NC2 6 6 N GND1 7 7 G GPIO1 8 8 GI	not connected, core voltage internally generated not connected, core voltage internally generated
NC1 5 5 N NC2 6 6 N GND1 7 7 G GPIO1 8 8 G	not connected, core voltage internally generated
NC2 6 6 N GND1 7 7 G GPIO1 8 8 G	
GND1 7 G GPIO1 8 8 G	ND1 Ground
GPIO1 8	
	PIO1 strapping: ENET_SEL[1] / Security Push Button
LINE_SYNC — 9 9 LINE	_SYNC AC line zero-cross detect signal
	II_RXD3 RGMII Receive Data Bit 3
	II_RXD2 RGMII Receive Data Bit 2
	II_RXD1 RGMII Receive Data Bit 1
RGMII RXD0 — 13 RGM	II_RXD0 RGMII Receive Data Bit 0
	II_RXDV RGMII Receive Data Valid
	I_RXCLK RGMII Receive Clock
NU1 16 16 N	NU1 not used
47	NU2 not used
10	ND2 Ground
10	PIO9 strapping: DDR_SEL / LED: Ethernet Link
00	P1010 strapping: BM_SEL / LED: Powerline Mode
0.1	I_TXCLK RGMII Transmit Clock
	II_TXEN RGMII Transmit Enable
NU3 — 23 N	NU3 not used
RGMII_TXD0 = 24 RGM	II_TXD0 RG MII Transmit Data Bit 0
	II_TXD1 RGMII Transmit Data Bit 1
RGMI_TXD2 = 26 RGM	II_TXD2 RGMII Transmit Data Bit 2
	II_TXD3 RGMII Transmit Data Bit 3
GND3 = 28 G	ND3 Ground
GPIO5 — 29 G	PIO5 strapping: MD_A[3]
GPIO7 = 30 G	PIO7 strapping: MD_A[4]
MII_MDIO = 31 31 PHY	_MDIO MII management data I/O
MII_MDCLK — 32 PHY_	_MDCLK MII management data clock
VDD1 = 33 V	DD1 +3.3V
VDD2 = 34 V	DD2 +3.3V
RESET — 35 RE	reset all module logic when low
GPIO11 — 36 GF	PIO11 strapping: SPEED_SEL[1] / LED: Power
GPIO8 — 37 GI	PIO8 strapping: MP_SEL / LED: Powerline Link
GND4 38 G	ND4 Ground
TX - 39 39	TX Analog transmit+ output to transformer
TXn 40 40	TXn Analog transmit- output to transformer
RXn 41 41 F	Analog receive- input from transformer
RX 42 42	RX Analog receive+ input from transformer
VAA 43 V	/AA +11.2 V

Table 4.1: Pin Assignment RGMII-Version

2LAN500 PLC-Module

5. Detailed Pin Description by Group

5.1. Ethernet-Interface

	i. Ethernet-interrace				
	MODE				
Pin	MAC	PHY	Pin Name MII	Pin Name RGMII	Description
					·
10 11 12 13	ı	0	MII_RXD3 MII_RXD2 MII_RXD1 MII_RXD0	RGMII_RXD3 RGMII_RXD2 RGMII_RXD1 RGMII_RXD0	Ethernet Receive Data: The PHY controller drives RXD[3:0] and the MAC core receives RXD[3:0]. RXD[3:0] transition synchronously with respect to RXCLK. For each RXCLK period in which RXDV is asserted, RXD[3:0] is valid. RXD0 is the least-significant bit. The PHY controller tri-states RXD[3:0] in isolate mode.
14	ı	0	MII_RXDV	RGMII_RXDV	Ethernet Receive Data Valid. The PHY controller asserts RXDV to indicate to the MAC core that it is presenting the recovered and decoded data bits on RXD[3:0] and that the data on RXD[3:0] is synchronous to RXCLK. RXDV transitions synchronously with respect to RXCLK. RXDV remains asserted continuously from the first recovered nibble of the frame through the final recovered nibble, and is de-asserted prior to the first RXCLK that follows the final nibble. The PHY controller tri-states MRX_DV in isolate mode.
15	I	О	MII_RXCLK	RGMII_RXCLK	Ethernet Receive Clock. RXCLK is a continuous clock that provides the timing reference for the transfer of the RXDV and RXD[3:0] signals from the PHY controller to the MAC core. The PHY controller always sources RXCLK. RXCLK frequency is equal to 25% of the data rate of the received signal on the Ethernet cable in MII 10/100 Mbps mode, and 12.5% of the data rate of the received signal on the Ethernet cable in RGMII 1000 Mbps mode. The PHY controller tristates RXCLK in isolate mode.
16	ı	0	MII_CRS	NU1	MII Ethernet Carrier Sense - MII only, not used in RGMII: The PHY controller asserts CRS when either transmit or receive medium is non-idle. The PHY deasserts CRS when both transmit and receive medium are idle. The PHY must ensure that CRS remains asserted throughout the duration of a collision condition. The transitions on the CRS signal are not synchronous to either the TXCLK or the RXCLK. The PHY controller tri-states CRS in isolate mode.
17	I	О	MII_RXER	NU2	MII Ethernet Receive Error - MII only, not used in RGMII: The PHY controller asserts RXER high for one or more RXCLK periods to indicate to the MAC core that an error (a coding error or any error that the PHY is capable of detecting that is otherwise undetectable by the MAC) was detected somewhere in the current frame. RXER transitions synchronously with respect to MRXCLK. While RXDV is de-asserted, RXER has no effect on the MAC core. The PHY controller tri-states RXERR in isolate mode.
21	ı	0	MII_TXCLK	/	Ethernet Transmit Clock: TXCLK is a continuous clock that provides a timing reference for the transfer of the TXEN and TXD[3:0] signals from the MAC core to the PHY controller. The PHY controller supplies TXCLK in 10/100 Mbps MII mode. The operating frequency of TXCLK is 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps. The PHY controller tri-states TXCLK in isolate mode.
21	o	I	/	RGMII_TXCLK	Ethernet Transmit Clock: TXCLK is a continuous clock that provides a timing reference for the transfer of the TXEN and TXD[3:0] signals from the MAC core to the PHY controller. The operating frequency of TXCLK is 125 MHz when operating at 1000 Mbps, 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps. The PHY controller ignores TXCLK in isolate mode.
22	O	ı	MII_TXEN	RGMII_TXEN	Ethernet Transmit Enable. A high assertion on TXEN indicates that the MAC core is presenting nibbles to the PHY controller for transmission. The AR7400 MAC core asserts TXEN with the first nibble of the preamble and keeps TXEN asserted while all nibbles to be transmitted are presented to the MII. TXEN is de-asserted prior to the first TXCLK following the final nibble of the frame. TXEN transitions synchronously with respect to TXCLK. The PHY controller ignores TXEN in isolate mode.
23	ı	O	MII_COL	NU3	MII Ethernet Collision Detected - MII only, not used in RGMII: The PHY controller asserts COL when it detects a collision on the medium. COL remains asserted while the collision condition persists. COL signal transitions are not synchronous to either the TXCLK or the RXCLK. The MAC core ignores the COL signal when operating in the full-duplex mode. The PHY controller tri-states COL in isolate mode

24 25 26 27	0	ı	MII_TXD0 MII_TXD1 MII_TXD2 MII_TXD3	RGMII_TXD0 RGMII_TXD1 RGMII_TXD2 RGMII_TXD3	Ethernet Transmit Data: The MAC core drives TXD[3:0] and the PHY controller receives TXD[3:0]. TXD[3:0] transition synchronously with respect to TXCLK. For each TXCLK period in which TXEN is asserted, TXD[3:0] is valid. TXD0 is the least-significant bit. The PHY controller ignores TXD[3:0] in isolate mode.
31	I/O	I/O	PHY_MDIO	PHY_MDIO	PHY Management Data In/Out. This is the control data input signal from the PHY controller. The PHY drives the Read Data synchronously with respect to the MDCLK clock during the read cycles. This is also the control data output signal from the MAC core that drives the control information during the Read/Write cycles to the PHY controller. The MAC core drives the MDIO signal synchronously with respect to the MDCLK.
32	0	I	PHY_MDCLK	PHY_MDCLK	PHY Management Data Clock: The MAC core sources MDCLK as the timing reference for transfer of information on the MDIO signals. MDCLK signal has no maximum high or low times. MDCLK minimum high and low times are 160 ns each, and the minimum period for MDCLK is 400 ns.

Table 5.1: Ethernet Signals

5.2. **GPIO-Pins - Strap Options**

There are a total of 11 General Purpose I/O-Pins, which have dual functions: They serve as pin-strapping and are sampled during reset in order to select different operation modes. During normal operation these pins are used to drive LED outputs or to connect a push-button. The functions of the pins is different for the MAC-Mode and the PHY-Mode. Please refer to section 6 for a detailed description of these functions.

Pin	Internal Pull-Up/Down	Pin Name	Function	Description
1	Pull-Up DUPLEX		Duplex Mode	Strap = 1: Full-Duplex (Default) Strap = 0: Half-Duplex
8	version dependent	GPI01	ENET_SEL[1]	Strap = 1: MII 10/100 Operation (Default on 2LAN500-xC) Strap = 0: RGMII 10/100/1000 Operation (Default on 2LAN500-xI)
4	Pull-Up	GPIO2	ANEN	Strap = 1: Auto-negotiate enabled (Default) Strap = 0: Auto negotiate disabled
3	Pull-Down GPI03		ISODEF	Strap = 1: MII/RGMII interface is isolated Strap = 0: MII/RGMII interface is active (Default)
2	Pull-Up GPI04		SPEED_SEL[0]	SPEED_SEL[1:0] - Ethernet Speed 00 = 10 Mbps 01 = 100 Mbps (Default)
36	Pull-Down	GPI011	SPEED_SEL[1]	10 = 1000 Mbps 11 = Reserved
29	Pull-Up	GPI05	MD_A[3]	MD_A[4:3] - PHY Management Address 00 = 0x00 01 = 0x08 (Default)
30	Pull-Down	GPI07	MD_A[4]	10 = 0x10 11 = 0x18
37			MP_SEL	Strap = 1: MAC-Mode (Default) Strap = 0: PHY-Mode
19	Pull-Up GPI09 DDR_SEL Only DDR_SEL=1, do not use external pull-dov External memory is always DDR1.		Only DDR_SEL=1, do not use external pull-down! External memory is always DDR1.	
20	Pull-Up	GPIO10	BM_SEL	Only BM_SEL=1, do not use external pull-down! Always boot from SPI-flash on module.

Table 5.2: GPIO Signals for pin strapping

5.3. Special Function Pins

	MC	DE		
Pin	MAC	PHY	Pin Name	Description
9	ı	I	LINE_SYNC	Zero Cross Detector Input. This signal is connected to an external zero cross detector that provides a logic level signal with safety isolation from the AC power line waveform. This signal informs the AR7400 of the power line frequency and timing.
35	I/O	I/O	RESET	The reset for all logic is internally generated by the DC/DC converter for the core voltage: The regulator has a power-good open drain output, which is delayed app. 215ms from the time the power-good signal is issued. Alternatively an external reset signal may be supplied to this open drain output but is not required. The external signal needs to be driven low for at least 100ms after all supply voltages are stable.

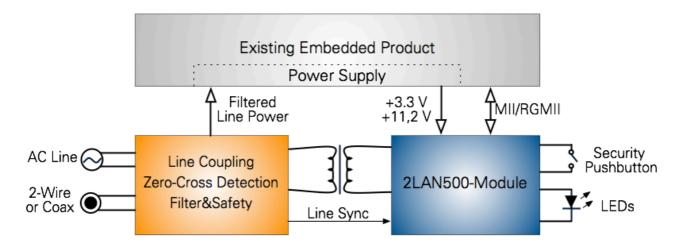
Table 5.3: Special Function Signals

5.4. Line Interface

For compatibility reasons, TX, RX and TXn, RXn are connected to 4 different pins, although these signals are internally connected, respectively. The older INT6400 based designs used a 4-wire analog interface, requiring 2 separate primary windings of the transformer. The AR7400/AR1500 based design uses a single primary winding for transmit as well as receive. See section 7 for the transformer interface.

	MC	DE			
Pin	MAC PHY Pin Name		Pin Name	Description	
39	0	0	TX	Analog Transmit Output, internally connected to RX = TXRX+	
40	0	0	TXn	Analog Transmit Output (complementary), internally connected to RXn = TXRX-	
41	I	I	RXn	Analog Receive Input (complementary), internally connected to TXn = TXRX-	
42	I	ı	RX	Analog Receive Input internally, connected to TX = TXRX+	

Table 5.4: AFE Line Interface Signals


5.5. Power

	MODE				
Pin	MAC	PHY	Pin Name	Description	
7 18 28 38	I	I	GND	Ground Reference	
33 34	ı	I	VDD	+3.3V digital power	
43	ı	ı	VAA	+11.2V analog power	
5 6	1	1	NC	Not internally connected: For compatibility to the devolo dLAN200 module, which used these pins for the core power supply, these pins remain unused. The 2LAN500 module generates the core voltage internally from the +3.3V supply.	

Table 5.5: Power Signals

6. Configuration of the 2LAN500 Module

In order to integrate the 2LAN500 module into an embedded design, the customer needs to provide the following interfaces, external to the module:

- Power supply: +3.3 V and +11.2 V see section 8.1 for power requirements
- AC-Line coupling (or telephone wire / coax coupling) and zero-cross detection including filters and safety components see section 7 for an application example.
- MII/RGMII Ethernet interface
- Optionally connection of status LEDs and a security pushbutton

In the following all configuration and signal options are described.

6.1. Host Interface Mode Selection

The host interface for the 2LAN500 module can be configured to one of the following two modes:

- MII/RGMII PHY mode: In this mode the module behaves like an Ethernet PHY using an MII/RGMII interface. The module can be configured as an Ethernet PHY to replace an existing Ethernet PHY on a developed product. In this mode, configuration and status information is available using the IEEE 802.3 MDI interface.
- MII/RGMII MAC mode: In this mode the module behaves like an Ethernet host device using an MII/RGMII interface. The module can be configured in MAC mode to connect to any other device that behaves like an Ethernet PHY. In the MAC mode, configuration and status information is available using the IEEE 802.3 MDI interface.

Host mode is selected through the use of the **HM_SEL** strapping at **GPIO 8**. The default mode without any external straps is MAC mode (1).

HM_SEL	Mode	Possible Application
0	PHY	Alternative PHY for power line communicationAlternative PHY for 2Wire transmission
1 (Default)	MAC	 Ethernet to HomePlug Adapter Connect to devices without MII-interface using PHY-to-PHY connection

Table 6.1: Host Interface Mode Selection

2LAN500 PLC-Module

6.2. Ethernet Configuration (PHY Mode only)

If the Host Interface Mode is configured for PHY mode, there are additional configuration straps that are unique to the Ethernet PHY mode of operation shown in Table 6.2. The table also states the required pin strappings for MAC mode.

SPEED_SEL[1:0] select sets the MII/RGMII data rate. With internal straps the data rate defaults to 100 Mbps. Only when a data rate of 10 Mbps is required, SPEED_SEL0 needs to be strapped to '0'. In almost all cases no pin strapping should be required.

For versions with RGMII interface the data rate has been set to 1000 Mbps, so no pin strapping is required as well.

Auto-negotiation (ANEN) enables auto-negotiation of the parameters for speed and duplex mode or defaults the Ethernet interface to the preset speed and duplex settings.

DUPLEX selects the transmission mode for the MII interface, either in full-duplex (default) or half-duplex mode. The RGMII interface always operates in full-duplex mode.

ISODEF controls whether MII/RGMII signals are active or tri-stated.

Signal Name	Pin Name	MAC Mode	PHY Mode
SPEED_SEL1 SPEED_SEL0	GPIO11 GPIO4	0 or 1 don't care	SPEED_SEL[1:0] - Ethernet speed 00 = 10 Mbps 01 = 100 Mbps (Default) 10 = 1000 Mbps 11 = Reserved
MD_A4 MD_A3	GPIO7 GPIO5	0 or 1 don't care	MD_A[4:3] - PHY Management Address 00 = 0x00 01 = 0x08 (Default) 10 = 0x10 11 = 0x18
ANEN	GPIO2	0 or 1 don't care	1 = Auto-negotiate enabled (Default)0 = Auto negotiate disabled
DUPLEX	DUPLEX	NC do not connect	1 = Full-Duplex (Default) 0 = Half-Duplex (only supported on MII interface)
ISODEF	GPIO3	0	1 = Interface isolated0 = Active Interface (Default)

Table 6.2: Ethernet Configuration Straps

6.3. LED-Indicators

The 2LAN500 module offers the connection of LED status indicators. The pins for the LEDs are GPIO pins, which serve the double purpose of pin strapping for mode configuration AND LED indicators. Depending on the polarity of the pin strapping, the LEDs have to be connected in one of the 2 following ways:

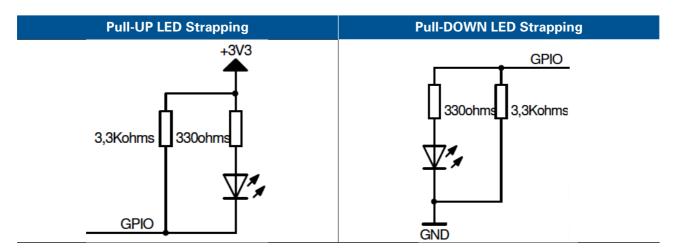


Fig. 6.3: Connection of LED Indicators

Component values in the figures above are typical. The value of the current limiting resistor is selected based on the desired LED current. Note that the maximum LED current must be limited to 12 mA.

The system status LEDs are controlled by routines in the MAC firmware. The status LED indicator configuration is listed in Table 6.3. Any two signals can also be connected to dual color LEDs.

Status LED	Pin Name	LED States			
Status LLD		ON	FLASH	OFF	
Power	GPIO11	Ready	Loading Firmware	Not Ready	
Host/Ethernet Link	GPIO9	Ethernet Link Detected	Transmit or Receive Activity	No Link Detected	
Powerline Mode	GPIO10	HomePlug 1.0 Traffic Detected	N/A	Silence	
Powerline Link	GPIO8	Powerline Link Detected	Powerline Activity Detected	No Powerline Link Detected	

Table 6.3: LED Status Indicators

6.4. Security Pushbutton

The security pushbutton provides an easy method for pairing two or more dLAN devices. By pressing the pushbutton for a short period of time on each device that should be added to the network the devices are connected as if they had the same password.

The Security Pushbutton is connected to **GPIO1**. The strapping of this pin - UP or DOWN - depends on the 2LAN500 version: The RGMII-version (i.e. the industrial temp. version) requires the GPIO1 pin to be strapped DOWN. Conversely, the MII-version (i.e. the commercial temp. version) requires the GPIO1 pin to be strapped UP. Therefore are are 2 different schematics for the security pushbutton:

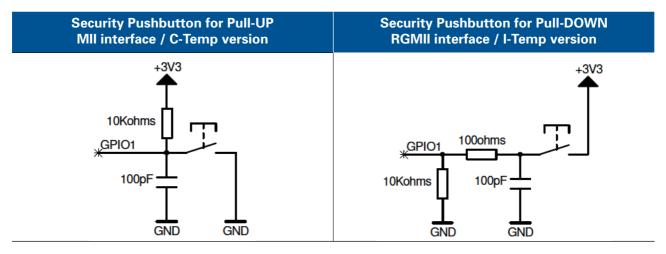


Fig. 6.4: Connection of Security Pushbutton

7. Application Example

7.1. Powerline Interface with RGMII version, PHY mode

Figure 7.1 gives an application example of how to connect the 2LAN500 module for PHY mode applications. In contrast to INT6400 based designs, no external over-voltage protection on the TX/RX-lines is required: All protection has been integrated in the module.

The AC zero cross detector is based on an opto-isolator to provide the required safety isolation between the power line and the low voltage secondary circuitry. The LED of the opto-isolator is connected to the power line in series with two high value resistors. The resistors limit the current (and voltage) that can flow through the LED during both forward conduction (ON state) and reverse bias (OFF state). The emitter of the phototransistor connects to low voltage ground. A pull-up on the collector side is provided on the module.

The high capacitances of the LED and phototransistor result in a relatively slow response time. The slow response provides low pass filtering which greatly reduces timing shift from noise or OFDM signals on the powerline.

Coupling capacitors and the secondary of the coupling transformer form a high-pass filter that allows the Powerline communications signal to pass, but blocks 50/60Hz AC sine wave. The resistors parallel to the capacitors serve to discharge the coupling capacitors when the device is removed from the AC line.

Transient protection is accomplished through a Metal Oxide Varistor. (MOV). For 230Vac networks at least a 300Vac MOV should be used. However, the MOV also presents an across-the-line capacitance of 100 pF or more. This capacitance can severely reduce the receive signal level at the upper (high frequency) end of the AR7400 communication band. Placing the MOV behind high frequency (high quality) inductors isolates this shunt capacitance. These inductors provide the added benefit of further isolating noise generated by the switching power supply from the communication signal path. The 220 Ω resistor in parallel with the inductors lowers the inductor Ω and minimizes self resonance of the inductor. A frequency dependent variable impedance shunt component in the PLC front end circuit would reduce data rate performance by making the front end impedance frequency dependent.

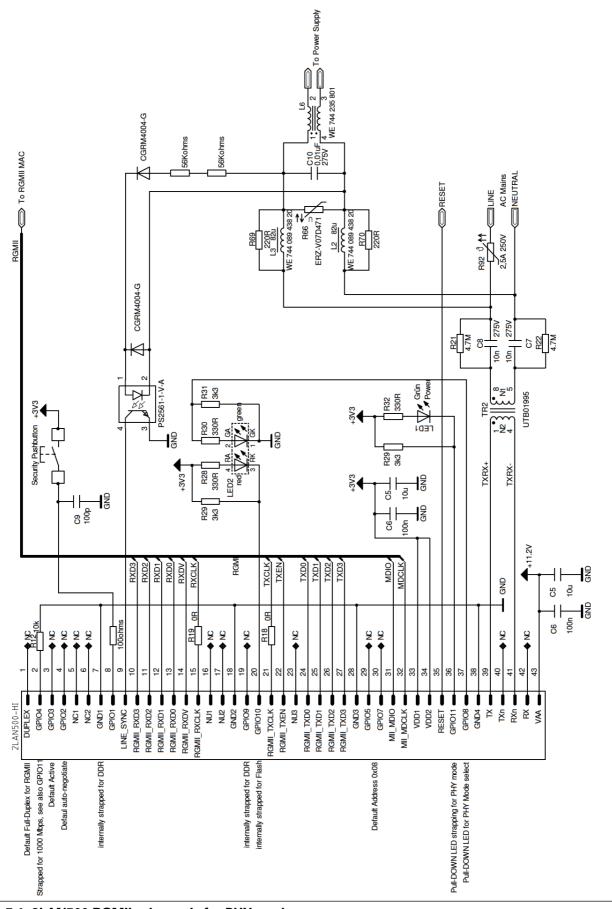


Fig. 7.1: 2LAN500 RGMII schematic for PHY mode

7.2. 2-Wire/telephone cable interface with MII version, MAC mode

If powerline communication i.e. transmission via AC-mains is not required and the signals are instead transmitted via a telephone or bell wire, the schematic of Fig. 7.1 can be simplified as the zero-cross detector can be omitted. For compatibility with existing INT6400 based designs, the wiring of the PLC-signals to a transformer with 2 primary windings is shown. For new designs the transformer in the appendix is recommended.

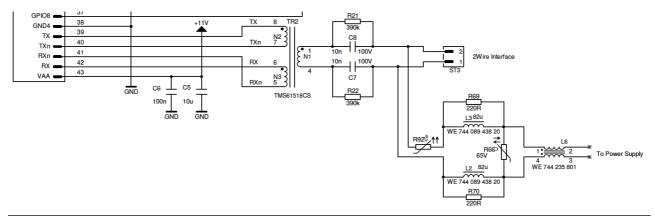


Fig. 7.2a: 2LAN500 MII line coupler for telephone or bell wire line

As in the schematic depicted in figure 7.1 it is likewise important for the low-voltage telephone wire design to isolate the capacitance of the Metal Oxide Varistor (MOV) from the PLC line.

- MOV surge suppression component capacitance is isolated by special high frequency inductors L2 and L3
- High impedance inductive isolation in front end and the common mode choke eliminate power supply switching noise and low impedance from interfering with the PLC signal

The following Figure 7.2b shows the complete schematic (without power supply).

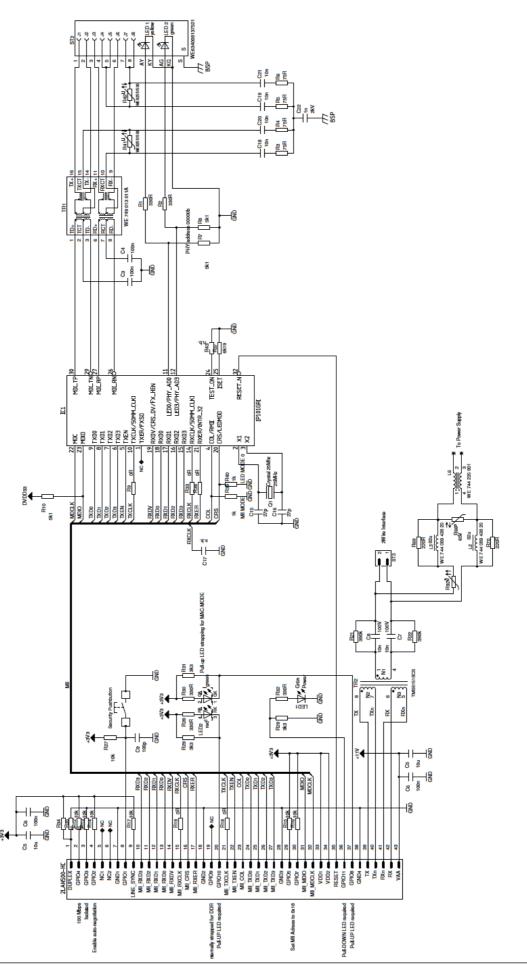


Fig. 7.2b: 2LAN500 MII schematic for MAC mode including 10/100 PHY and Ethernet interface

2LAN500 PLC-Module

7.3. RGMII Ethernet interface

The AR7400 supports both MAC mode and PHY mode Ethernet interfaces. In MAC mode the AR7400 connects to an external Ethernet transceiver (PHY). The AR7400 uses RGMII to connect to the PHY and supports 10BaseT, 100BaseTX, and 1000BaseT. The PHY IC can be any standard IC as long as it satisfies requirements specified in the AR7400 data sheet. The current reference application uses Atheros' AR8035.

Because of the speed at which RGMII functions when at 1 gigabit rate, there are special requirements for the routing of these signal traces such as trace impedance, spacing, and electrical length. There are two different match groups. Within each match group, the maximum trace length should be less than 50 mm and the electrical length must match within 5%. This is critical. The two match groups are:

Group 1	Group 2
RGMII_TXCLK	RGMII_RXCLK
RGMII_TXEN	RGMII_RXDV
RGMII_TXD[3:0]	RGMII_RXD[3_0]

Table 7.3: RGMII Match Groups

The 2LAN500 Module supports RGMII v1.3 with internal delay. Automatically 2 ns nominal delay is added on the RGMII_TXCLK signal.

8. 2LAN500 Specifications

8.1. Power Supply Requirements

The 2LAN500 module needs 3.3 V and 11.2 V for operation. The typical power consumption is app. 2 W. The core voltage of 1.05 V and the DDR voltage of +2.5 V are generated internally from the 3.3 V supply.

The applied VAA voltage MUST be set to a range of no less than 11 V to a MAXIMUM of 11.4 V. A precision LDO regulator is recommended.

Symbol	Min	Тур	Max
VDD Supply Voltage	3.13 V	3.30 V	3.47 V
VDD Supply Current	200 mA	300 mA	400 mA
VAA Supply Voltage	11.0 V	11.2 V	11.4 V
VAA Supply Current	70 mA	80 mA	90 mA

Table 8.1: Power Supply Requirements

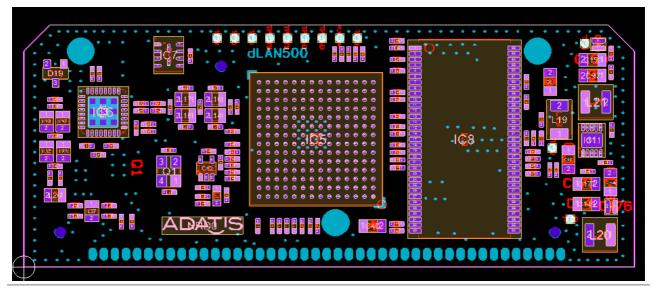
8.2. Absolute Maximum Ratings

Operation at or above the absolute maximum ratings may cause permanent damage to the device. Exposure to these conditions for extended periods of time may affect long-term device reliability. Correct functional behavior is not implied or guaranteed when operating at or above the absolute maximum ratings.

The analog power supply voltage (VAA) should not be applied without the 3.3 V (VDD) power supply voltage! Otherwise, there are no special requirements with regards to power sequencing.

Symbol	Parameter	Min	Max
VDD	Power Supply Voltage	-0.3 V	3.6 V
VAA	Analog Voltage	-0.3 V	12.5 V
T _{STORE}	Storage Temperature	-40 °C	+150 °C
T _{OPERATE}	Operation Temperature Commercial Temp. Version	0 °C	+60 °C
T _{OPERATE}	Operation Temperature Industrial Temp. Version	-40 °C	+85 °C
V _{ESD}	Human Body Model	_	2 kV

Table 8.2: Absolute Maximum Ratings


8.3. DC Characteristics

Symbol	Parameter	Test Conditions	Min	Max
V _{IL}	Low-Level input voltage		_	0.8 V
VIH	High-Level input voltage		2.0 V	_
VOL	Low-Level output voltage	IOL = 4 mA all other interfaces IOL = 12 mA for GPIOs		0.4 V
VOH	High-Level output voltage	IOL = -4 mA all other interfaces IOL = -12 mA for GPIOs	2.4 V	_
IIL	Low-Level input current	VI = GND	-1 μA	_
IIH	High-Level input current	VI = VDD	_	+1 μΑ
loz	High-impedance output current	GND ≤ VI ≤ VDD	-1 μA	+1 μΑ

Table 8.3: DC Characteristics

8.4. PCB Layout Top- / Bottom-Layer

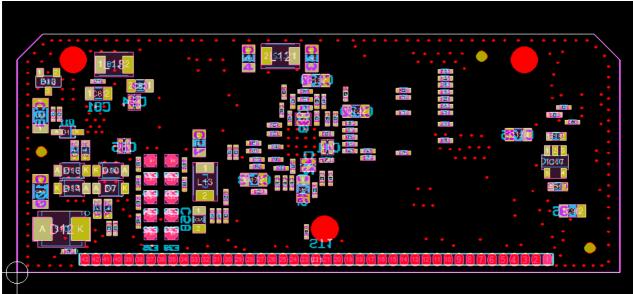
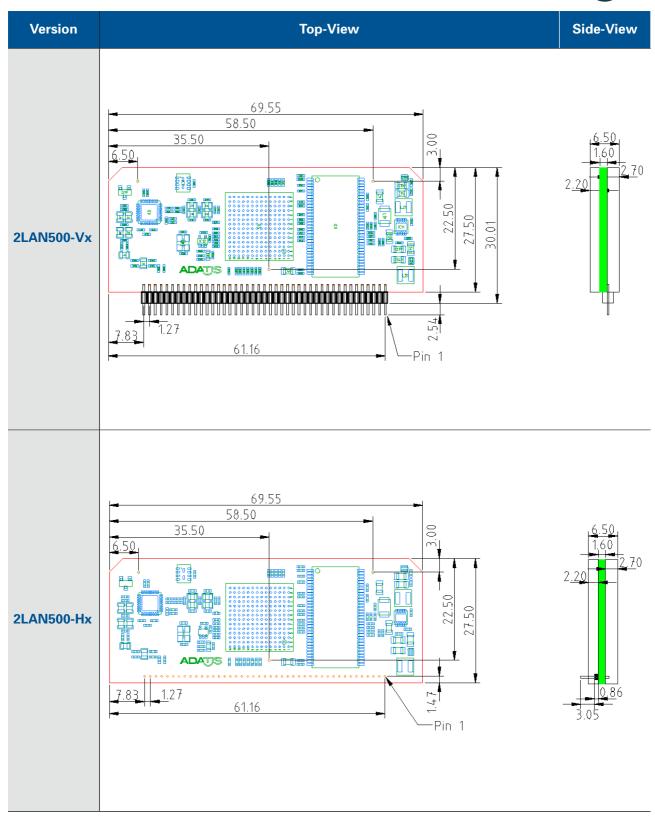


Figure 8.4: Top and Bottom Component Placement

8.5. **Mechanical Specifications**

The 2LAN500 module is connected via an industry standard 43-pin header using 0.46 mm square pins on 0.127 mm (half pitch) centers. For easy insertion and removal of module devices a mating female connector can be used. Alternatively, the device may be soldered directly to the host board.

Connectors used:


Samtec: TMS-143-02-L-S-RA (Lead Size: (0.46 mm) .018" SQ) Vertical version: Horizontal version: Samtec: FTS-143-01-F-S (Lead Size: (0.41 mm) .016" SQ)

The card dimensions including connector are: • Vertical version: 69.55 x 32.64 x 8.8 mm

Horizontal version: 69.5 x 27.5 x 13.8 mm

The design has been driven by compatibility to the devolo dLAN200 board. Therefore the shape and size of the PCB, the type and location of the connector and the 3 mounting holes have been kept compatible.

Table 8.5: Mechanical Specifications

9. Appendix

9.1. Transformer Data Sheet

HomePlug®

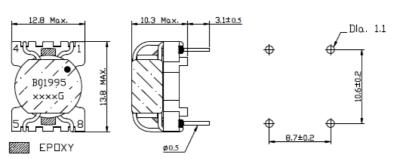
UMEC MODEL NO.:	DESCRIPTION	REVISION	DATE
UTB01995	HomePlug® Transformer, 10uH Min., 1:1, Reinforced For Atheros Communications' AR7400/AR1500 Chipset	A0	10/42

ELECTRICAL SPECIFICATIONS AT 25°C:

1. INDUCTANCE: 10uH Min., at 100KHz 100mV, PIN(1-4). (-20°C to +80°C)

2. TURNS RATIO & POLARITY: 1: 1 ±5%, at 50KHz 1V, PIN(1-4):(8-5)

3. DC RESISTANCE @25°C: 0.035Ω Max., each Windings


4. HI-POT: 3750Vac/1sec, 0.5mA Max.. PIN(1-8)

SAFETY: Complies with IEC 60950-1, EN 60950-1, UL 60950-1, CAN/CSA-22.2 No. 60950-1, and AS/NZS 60950.1

Reinforced Insulation requirements at working voltages up to 250V.

OPERATING TEMPERATURE -40°C to +85°C. ALL ELECTRICAL SPECIFICATIONS ARE AT 25°C UNLESS NOTED OTHERWISE.

Dimensions:

Suggested P.C.B. Layout

NOTE: 1. For RoHS compliant products:

- a.) The UMEC GmbH ordering code: UETG-UTB01995
- b.) Date Code suffix to "G" (xxxxG).
- c.) Solder: Sn/Cu.
- 2. Specifications are subject to change without prior notice.

UNIT: mm

UMEC elektronische Komponenten GmbH

Kreuzenstrasse 80 | 74076 Heilbronn | www.umec.de

Sheet 1 of 1

The information contained in this specification is the sole property of UMEC, Ltd. Any reproduction or use without the written permission of UMEC. Ltd. Is prohibited.